Optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients

نویسندگان

  • Florian Lemarié
  • Eric Blayo
  • Laurent Debreu
چکیده

In this report we present a global-in-time non-overlapping Schwarz method applied to the one dimensional unsteady diffusion equation. We address specifically the problem with discontinuous diffusion coefficients, our approach is therefore especially designed for subdomains with heterogeneous properties. We derive efficient interface conditions by solving analytically the minmax problem associated to the search of optimized conditions in a Robin-Neumann case and in a two-sided Robin-Robin case with constant coefficients. We study the impact of the finiteness of the subdomains on the optimized conditions. Then we address the problem with spatially variable coefficients. We derive a new approach to determine the convergence factor of the algorithm, which enables to optimize the convergence speed. The theoretical results are illustrated by numerical experiments in the case of Robin-Robin and Dirichlet-Neumann interface conditions. Key-words: domain decomposition, waveform relaxation, Schwarz methods ∗ Jean Kuntzmann Laboratory, BP 53, 38041 Grenoble Cedex 9, France † INRIA Grenoble Rhône-Alpes, Montbonnot, 38334 Saint Ismier Cedex, France in ria -0 03 24 53 3, v er si on 1 25 S ep 2 00 8 Algorithme de Schwarz optimisé global-en-temps pour des équations de diffusion à coefficients discontinus et spatialement variables Résumé : Dans ce rapport nous présentons une méthode de Schwarz sans recouvrement globale en temps appliquée à l’équation de diffusion instationnaire 1D. Nous abordons spécifiquement le problème avec des coefficients de diffusion discontinus, notre approche est donc spécialement conçue pour des sousdomaines possédant des propriétés physiques hétérogènes. Nous dérivons des conditions d’interface efficaces en résolvant analytiquement le problème de minmax associé à la recherche de conditions optimisées dans un cas Robin-Neumann puis dans un cas two-sided Robin-Robin à coefficients constants. Nous étudions également l’impact de la taille des sous-domaines considérés sur les conditions optimisées. Ensuite nous abordons le problème avec des coefficients variables. Nous dérivons une nouvelle approche afin de déterminer le facteur de convergence de l’algorithme, ce qui nous permet d’optimiser la vitesse de convergence. Les résultats théoriques sont illustrés par des expériences numériques. Mots-clés : décomposition de domaine, algorithmes de relaxation d’onde, méthodes de Schwarz in ria -0 03 24 53 3, v er si on 1 25 S ep 2 00 8 OSWR for diffusion equations with discontinuous and spatially variable coefficients3 Part

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficients, Part 1: The Constant Coefficients Case

In this paper we present a global-in-time non-overlapping Schwarz method applied to the one dimensional unsteady diffusion equation. We address specifically the problem with discontinuous diffusion coefficients, our approach is therefore especially designed for subdomains with heterogeneous properties. We derive efficient interface conditions by solving analytically the minmax problem associate...

متن کامل

Toward an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficients, Part 2: the Variable Coefficients Case

This paper is the second part of a study dealing with the application of a global-in-time Schwarz method to a one dimensional diffusion problem defined on two non-overlapping subdomains. In the first part, we considered that the diffusion coefficients were constant and possibly discontinuous. In the present study, we address the problem for spatially variable coefficients with a discontinuity a...

متن کامل

Optimized Schwarz Waveform Relaxation for Porous Media Applications

Far field simulations of underground nuclear waste disposal involve a number of 11 challenges for numerical simulations: widely differing lengths and time-scales, 12 highly variable coefficients and stringent accuracy requirements. In the site under 13 consideration by the French Agency for Nuclear Waste Management (ANDRA), the 14 repository would be located in a highly impermeable geological l...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Optimized Schwarz Methods for Maxwell equations

Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008